Муниципальное бюджетное общеобразовательное учреждение «Табунская средняя общеобразовательная школа» Табунского района Алтайского края

Рассмотрено:

ШМО учителей

технологии

Руководитель ШМО

Согласовано:

Заместитель директора

по ВР "МБОУ

Табунская СОШ"

Утверждаю:

Директор МБОУ

«Табунская СОШ»

Заяц Г.П.

Пилипейко Н.Г.

А.И. Дубина

Протокол № 1

от 27 августа 2024 г.

27. 08. 2024 г.

Приказ № 58-1-од от 27.08.2024 года

Дополнительная общеобразовательная общеразвивающая программа «Практическая робототехника на основе конструктора программируемых моделей инженерных систем»

в рамках реализации федерального проекта «Современная школа: центра образования естественно-научной и технологической направленности «Точка Роста»

Составитель: Чайка Иван Николаевич, заместитель директора по информатизации

СОДЕРЖАНИЕ ПРОГРАММЫ

- 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- 2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
- 3. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН
- 4. СОДЕРЖАНИЕ ПРОГРАММЫ
- 5. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
- 6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
- 7. СПИСОК ЛИТЕРАТУРЫ

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная общеобразовательная общеразвивающая программа «Практическая робототехника на основе конструктора программируемых моделей инженерных систем» является программой технической направленности.

Актуальность программы заключается в том, что в настоящее время в Алтайском крае наблюдается повышенный интерес и необходимость в развитии новых технологий, электроники, механики и программирования. Успехи страны в XXI веке определяют не природные ресурсы, а уровень интеллектуального потенциала, который определяется уровнем самых передовых на сегодняшний день технологий. Уникальность образовательной робототехники заключается в возможности объединить конструирование и программирование в одном курсе, что способствует интегрированию преподавания информатики, математики, физики, черчения, естественных наук с развитием инженерного мышления, через техническое творчество. Техническое творчество — мощный инструмент синтеза знаний, закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования — многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

Отличительные особенности программы.

Программа реализуется на базе образовательного центра «Точка Роста». Каждый раздел обучения представлен как этап работы связанный с конструированием, программированием, практической задачей.

Содержание программы ориентирует обучающихся на постоянное взаимодействие друг с другом и преподавателем, решение практических (конструкторских) проблем осуществляется методом проб и ошибок и требует постоянного улучшения и перестройки роботизированных моделей для оптимального решения поставленной практической задачи. Также программа ориентирует обучающихся на самостоятельное обучение, с использованием полученных знаний в рамках практической деятельности.

Программа дает возможность раскрыть любую тему нетрадиционно, с необычной точки зрения, взглянуть на решение классической практической задачи под новым углом для достижения максимального результата.

Адресат программы.

Программа «Практическая робототехника» предназначена для детей от 12 до 16 лет.

В группы принимаются обучающиеся 5-8 классов. Группа может состоять из детей одного возраста или может быть разновозрастной.

Для вхождения в образовательный процесс в рамках данной программы необходим базовый уровень знаний по математике, физике и информатике. Так

как программа разделена на модули и предполагает большое количество практической работы предполагается формирование мини-групп (по 2 человека в каждой) для достижения максимального результата. По причине наличия в программе завершающего (4) модуля, ориентированного на реализацию собственного проекта, предполагается выход на участие обучающихся с собственным проектом в конференциях и профильных мероприятиях всех уровней.

Цель программы: формирование представлений о технологической культуре производства, развитие культуры труда подрастающих поколений, освоение технических и технологических знаний и умений, ознакомление обучающихся с программированием, использованием конструированием, роботизированных современного устройств, технологическими основными процессами обучающихся конференциях производства, подготовка К участию В робототехнических соревнованиях.

Задачи дополнительной общеразвивающей программы:

Образовательные:

- формирование навыков прототипирования и конструирования моделей роботов.
- знакомство с принципом работы и конструированием робототехнических устройств;
- формирование навыков составления алгоритмов и методов решения организационных и технико-технологических задач;
- осуществление умение написания и чтения кода, умение использовать способы графического представления технической, технологической и инструктивной информации;
- формирование навыков использования общенаучных знаний по предметам естественно-математического цикла в процессе подготовки и осуществления технологических процессов для обоснования и аргументации рациональности деятельности в рамках проектной деятельности;

Развивающие:

- способствовать развитию творческих способностей каждого ребенка на основе личностно-ориентированного подхода;
- развить интерес к робототехнике и мехатронике;
- развитие творческого потенциала и самостоятельности в рамках минигруппы;

- развитие психофизических качеств, обучающихся: память, внимание, аналитические способности, концентрацию и т.д.

Воспитательные:

- формирование ответственного подхода к решению задач различной сложности;
- формирование навыков коммуникации среди участников программы;
- формирование навыков командной работы.

Принципы отбора содержания.

Образовательный процесс строится с учетом следующих принципов:

- 1. Культуросообразности и природосообразности. В программе учитываются возрастные и индивидуальные особенности детей.
- 2. Системности. Полученные знания, умения и навыки, обучающиеся системно применяют на практике, создавая проектную работу. Это позволяетиспользовать знания и умения в единстве, целостности, реализуя собственный замысел, что способствует самовыражению ребенка, развитию его творческого потенциала.
- 3. Комплексности и последовательности. Реализация этого принципа предполагает постепенное введение обучающихся в мир робототехники и автоматизации устройств.
- 4. Наглядности. Использование наглядности повышает внимание обучающихся, углубляет их интерес к изучаемому материалу, способствует развитию внимания, воображения, наблюдательности, мышления.

Основные формы и методы.

В ходе реализации программы используются следующие формы обучения:

По охвату детей: групповые, коллективные.

По характеру учебной деятельности:

- беседы (вопросно-ответный метод активного взаимодействия педагога и обучающихся на занятиях, используется в теоретической части занятия);
- защита проекта (используется на творческих отчетах, фестивалях, конкурсах, как итог проделанной работы);
- конкурсы и фестивали (форма итогового, иногда текущего) контроля проводится с целью определения уровня усвоения содержания образования, степени подготовленности к самостоятельной работе, выявления наиболее способных и талантливых детей);
- практические занятия (проводятся после изучения теоретических основ с целью отработки практических умений и изготовления роботов);
- наблюдение (применяется при изучении какого-либо объекта, предметов, явлений).

На занятиях создается атмосфера доброжелательности, доверия, что во многом

помогает развитию творчества и инициативы ребенка. Выполнение творческих заданий помогает ребенку в приобретении устойчивых навыков работы с различными материалами и инструментами. Участие детей в выставках, фестивалях, конкурсах разных уровней является основной формой контроля усвоения программы обучения и диагностики степени освоения практических навыков ребенка.

Методы обучения.

В процессе реализации программы используются различные методы обучения.

- 1. Методы организации и осуществления учебно-познавательной деятельности:
- словесные (рассказ; лекция; семинар; беседа; речевая инструкция; устное изложение; объяснение нового материала и способов выполнения задания; объяснение последовательности действий и содержания; обсуждение; педагогическая оценка процесса деятельности и ее результата);
- наглядные (показ видеоматериалов и иллюстраций, показ педагогом приёмов исполнения, показ по образцу, демонстрация, наблюдения за предметами и явлениями окружающего мира, рассматривание фотографий, слайдов);
- практически-действенные (упражнения на развитие моторики пальцев рук (пальчиковая гимнастика, физкультминутки; воспитывающие и игровые ситуации; ручной труд, изобразительная и художественная деятельность; тренинги);
- проблемно-поисковые (создание проблемной ситуации, коллективное обсуждение, выводы);
- методы самостоятельной работы и работы под руководством педагога (создание творческих проектов);
- информационные (беседа, рассказ, сообщение, объяснение, инструктаж, консультирование, использование средств массовой информации литературы и искусства, анализ различных носителей информации, в том числе Интернет-сети, демонстрация, экспертиза, обзор, отчет, иллюстрация, кинопоказ, встреча с мастерами народных промыслов, выпускниками).
- побудительно-оценочные (педагогическое требование и поощрение порицание и создание ситуации успеха; самостоятельная работа).
- 2. Методы контроля и самоконтроля за эффективностью учебнопознавательной деятельности:
- устный контроль и самоконтроль (беседа, рассказ ученика, объяснение, устный опрос);
- практический контроль и самоконтроль;
- наблюдения (изучение обучающихся в процессе обучения).

Выбор метода обучения зависит от содержания занятий, уровня подготовленности и опыта обучающихся. Информационно-рецептивный

метод применяется на теоретических занятиях. Репродуктивный метод обучения используется на практических занятиях по отработке приёмов и навыков определённого вида работ. Исследовательский метод применяется в работе над тематическими творческими проектами.

Для создания комфортного психологического климата на занятиях применяются следующие педагогические приёмы: создание ситуации успеха, моральная поддержка, одобрение, похвала, поощрение, доверие, доброжелательно-требовательная манера.

В ходе реализации программы используются следующие типы занятий:

- комбинированное (совмещение теоретической и практической частей занятия; проверка знаний ранее изученного материала; изложение нового материала, закрепление новых знаний, формирование умений переноса и применения знаний в новой ситуации, на практике; отработка навыков иумений, необходимых при изготовлении продуктов творческого труда);
- теоретическое (сообщение и усвоение новых знаний при объяснении новой темы, изложение нового материала, основных понятий, определение терминов, совершенствование и закрепление знаний);
- диагностическое (проводится для определения возможностей и способностей ребенка, уровня полученных знаний, умений, навыков с использованием тестирования, анкетирования, собеседования, выполнения конкурсных и творческих заданий);
- контрольное (проводится в целях контроля и проверки знаний, умений и навыков обучающегося через самостоятельную и контрольную работу, индивидуальное собеседование, зачет, анализ полученных результатов. Контрольные занятия проводятся, как правило, в рамках аттестации
- обучающихся (по пройденной теме, в начале учебного года, по окончании первого полугодия и в конце учебного года);
- практическое (является основным типом занятий, используемых в программе, как правило, содержит повторение, обобщение и усвоение полученных знаний, формирование умений и навыков, их осмысление и закрепление на практике при выполнении изделий и моделей, инструктаж при

выполнении практических работ, использование всех видов практик);

- вводное занятие (проводится в начале учебного года с целью знакомства с образовательной программой, составление индивидуальной траектории обучения; а также при введении в новую тему программы);
- итоговое занятие (проводится после изучения большой темы или раздела, по окончании полугодия, каждого учебного года и полного курса обучения).

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

По итогам обучения по программе ребенок демонстрирует следующие результаты:

- знает принципы построения конструкции робототехнических устройств на программном управлении микроконтроллером Arduino;
- знает базовые основы алгоритмизации;
- правила техники безопасности при работе с электронными и металлическими элементами;
- умеет разрабатывать уникальные конструкции для робототехнических задач;
- обладает навыками программирования и чтения чужого кода.

Механизм оценивания образовательных результатов.

Уровень теоретических знаний.

- Низкий уровень. Обучающийся знает фрагментарно изученный материал. Изложение материала сбивчивое, требующее корректировки наводящими вопросами.
- Средний уровень. Обучающийся знает изученный материал, но для полного раскрытия темы требуются дополнительные вопросы.
- Высокий уровень. Обучающийся знает изученный материал. Может дать логически выдержанный ответ, демонстрирующий полное владение материалом.

Уровень практических навыков и умений. Владение технологиями проектирования, конструирования и программирования робота.

- Низкий уровень. Требуется помощь педагога при сборке и программировании.
- Средний уровень. Требуется периодическое напоминание о том, какие технологии и методы при проектировании и сборки необходимо применять.
- Высокий уровень. Самостоятельный выбор технологии конструкции, языка и типа программы.

Способность создания изделий из составных частей набора.

- Низкий уровень. Не может создать изделие без помощи педагога.
- Средний уровень. Может создать изделие при подсказке педагога.
- Высокий уровень. Способен самостоятельно создать изделие, проявляя творческие способности.

Формы подведения итогов реализации программы.

Отслеживание результатов образовательного процесса осуществляется по результатам выполнения проекта.

При подведении итогов освоения программы используются:

- опрос;
- наблюдение;
- анализ, самоанализ,
- собеседование;
- выполнение творческих заданий;
- презентации;
- участие детей в выставках, конкурсах и фестивалях различного уровня, согласно учебному плану и учебно-тематическому плану.

3. УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Раздел	Тема	Кол-во часов			_
		теория	практика	всего	Форма подведения итогов
Основные принципы построения робототехнических систем.	1. Вводное занятие: Материалы и инструменты, используемые для работы.	1	3	4	Опрос
	2. Физические принципы построения роботов.	1	3	4	Опрос
	3. Конструкции и разновидности роботов.	1	3	4	Опрос
Микроконтроллер Периферия. Программирование	1. Микроконтроллер Arduino. Первая программа.	1	4	5	Опрос
	2. Базовые программные функции.	2	4	6	Просмотр
	3. Периферийные устройства.	1	4	5	Просмотр
	4. Регуляторы. Управляющее воздействие.	1	4	5	Мини проект
Универсальная платформа исследовательских задач	1. Элементная база набора. Стандартная платформа.	1	3	4	Опрос
	2. Варианты построения манипулятора. Захват объекта.	0	2	2	Просмотр
	 Модуль Технического зрения. 	0	2	2	Просмотр
	4. Перемещение объектов различной формы и цвета.	0	4	4	Мини проект

Проект	1. Тематика проекта. Соревновательный робот. Проектная робототехника.	1	4	5	опрос
	2. Построение 3dмодели. Конструирование модели.	0	4	4	просмотр
	3. Программирование. Написание программы. Отладка и улучшение	0	4	4	Просмотр
	4. Подготовка и защита проекта	0	4	4	зачет
	ВСЕГО	10	58	68	

4.СОДЕРЖАНИЕ ПРОГРАММЫ

Раздел «Основные принципы построения робототехнических систем».

Тема 1. Вводное занятие: Материалы и инструменты, используемые для работы.

Теория: Принципы и варианты построения робототехнических систем. Рассматриваются разновидности существующих робототехнических конструкторов, основанных на микроконтроллерах семейства ARM. Рассматриваются инструменты для работы, правила и способы соединения электрических проводов, сервисы для построения подобных схем, электронные симуляторы конструктора.

Формы занятий: лекция, беседа.

Тема 2. Физические принципы построения роботов.

Теория: Основные приводные механизмы. Механизмы захвата.

Степень свободы. Манипуляторы.

Практика: сборка базовых электрических схем, расчет физических характеристик устройства.

Формы занятий: беседа, практическое занятие.

Тема 3. Конструкции и разновидности роботов.

Теория: Разновидности подвижных роботов.

Формы занятий: лекция, беседа

Раздел «Микроконтроллер. Периферия. Программирование».

Тема 1. Микроконтроллер Arduino. Первая программа.

Теория: Микроконтроллер. Установка и настройка ПО. Запуск первых программ.

Практика: Настройка микроконтроллера для работы, установка и настройка ПО, загрузка и установка драйверов, библиотек.

Формы занятий: практическая работа.

Тема 2. Базовые программные функции.

Теория: Переменные, типы данных, функции.

Практика: сборка базовых мини-конструкций с программным управлением».

Формы занятий: практическая работа.

Тема 3. Периферийные устройства.

Теория: Датчики и модулю дополнения. Способы подключения.

Практика: Подключение всех датчиков, входящих в комплект набора, программирование. Выполнение мини-заданий.

Формы занятий: практическое занятие.

Тема 4. Регуляторы. Управляющее возлействие.

Теория: рассмотрение базовых регуляторов, позволяющих роботу перемещаться в пространстве. Регуляторы.

Практика: сборка классической двухмоторной платформы, выполнение мини-проекта.

Формы занятий: практическое занятие, проектная деятельность.

Раздел «Универсальная платформа исследовательских задач»

Тема 1. Элементная база набора. Стандартная платформа.

Теория: Стандартная двухмоторная платформа

Практика: сборка классической двухмоторной платформы, проезд по линии и вдоль стены.

Формы занятий: практическое занятие.

Тема 2. Варианты построения манипулятора. Захват объекта.

Теория: Варианты манипуляционных роботов. Механизмы захвата.

Практика: сборка классической двухмоторной платформы с манипулятором. Пробное перемещение объектов.

Формы занятий: практическое занятие.

Тема 3. Модуль технического зрения.

Теория: Модуль технического зрения TrackingCam. ПО и библиотеки. Интеграция с классическими сборками роботов.

Практика: сборка классической двухмоторной платформы с манипулятором и модулем технического зрение. Обнаружение объектов.

Формы занятий: практическое занятие.

Тема 4. Перемещение объектов различной формы и цвета.

Практика: сборка классической двухмоторной платформы с манипулятором и модулем технического зрение. Обнаружение объектов и сортировка объектов в зависимости от размера и расцветки. Мини-проект.

Формы занятия: практическое занятие, проектная деятельность.

Раздел «Проект»

Тема 1. Тематика проекта. Соревновательный робот. Проектная робототехника. Различие роботов.

Теория: Этапы проекта. Проекты по робототехнике. Отличие проектной робототехники от соревновательной робототехники. Потенциальные мероприятия для участия с проектом (конференция, конкурс, хакатон и т.п.).

Формы занятий: лекция, беседа.

Тема 2. Построение 3d-модели. Конструирование модели.

Теория: создание 3d-модели, чертежа и др. технической документации устройства. Сборка и отладка устройства.

Практика: Сборка и отладка собственного устройства из деталей, входящих в образовательный набор и деталей, которые были ранее спроектированы и распечатаны на 3d-принтере.

Формы занятий: практическое занятие.

Тема 3. Программирование. Написание программы. Отладка и улучшение программы.

Практика: «написание программы, отладка и улучшение показателей работы робота.

Формы занятий: практическое занятие.

Тема 4. Подготовка и защита проекта.

Практика: Защита проектов.

Формы занятий: проектная деятельность, зачет.

5.КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

Тема	Дата		
Тема	план	факт	
1. Вводное занятие: Материалы и			
инструменты, используемые для работы.			
2. Физические принципы построения роботов.			
3. Физические принципы построения роботов.			
4. Конструкции и разновидности роботов.			
5. Конструкции и разновидности роботов.			
6. Микроконтроллер Arduino. Первая программа.			
7. Микроконтроллер Arduino. Первая программа.			
8. Базовые программные функции.			
9. Базовые программные функции.			
10. Периферийные устройства.			
11. Периферийные устройства.			
12. Регуляторы. Управляющее воздействие.			
13.Регуляторы. Управляющее воздействие.			
14. Элементная база набора. Стандартная платформа.			
15. Элементная база набора. Стандартная платформа.			
16. Варианты построения манипулятора. Захват объекта.			
17.Варианты построения манипулятора. Захват объекта.			
18. Модуль технического зрения.			
19. Модуль технического зрения.			

20.Перемещение объектов различной формы и цвета.	
21. Перемещение объектов различной формы и цвета.	
22. Тематика проекта. Соревновательный робот. Проектная робототехника.	
23. Тематика проекта. Соревновательный робот. Проектная робототехника. Различие роботов.	
24.Построение 3d-модели. Конструирование модели.	
25. Построение 3 d-модели. Конструирование модели.	
26. Программирование. Написание программы. Отладка и улучшение программы.	
27.Программирование. Написание программы. Отладка и улучшение программы.	
28. Подготовка и защита проекта	
29. Подготовка и защита проекта	
30. Подготовка и защита проекта	
31. Подготовка и защита проекта	
32. Подготовка и защита проекта	
33. Подготовка и защита проекта	
34. Подготовка и защита проекта	

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Методическая продукция:

- Методические разработки, рекомендации, пособия, описания, инструкции, аннотации.
- Учебное пособие «Программирование моделей инженерных систем» М.: ООО «Прикладная робототехника», 2020 г.
- Учебное пособие «Основы программирования моделей инженерных систем» М.: ООО «Прикладная робототехника», 2020 г.
- Образовательный набор по электронике, электромеханике и микропроцессорной технике. Конструктор программируемых моделей инженерных систем. Расширенный

Информационное обеспечение программы. Интернет-ресурсы:

Учебныепособияиинструкции.//URL:https://appliedrobotics.ru/?page id=670

7. СПИСОК ЛИТЕРАТУРЫ

Нормативные правовые акты

- Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012
 № 273-ФЗ.
- Указ Президента Российской Федерации «О мерах по реализации государственной политики в области образования и науки» от 07.05.2012 № 599.
- Указ Президента Российской Федерации «О мероприятиях по реализации государственной социальной политики» от 07.05.2012 № 597.
- Распоряжение Правительства РФ от 30 декабря 2012 г. №2620-р.
- Проект межведомственной программы развития дополнительного образования детей в Российской Федерации до 2020 года.
- Приказ Министерства просвещения РФ от 09.11.2018 г. № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Постановление Г лавного государственного санитарного врача РФ от 04.07.2014 N 41 «Об утверждении СанПиН 2.4.4.3172-14 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей».

Для педагога дополнительного образования:

- Саймон Монк. Программируем Arduino. Питер, 2017
- Петин В. Arduino и Raspberry Pi в проектах Internet of Things. М., 2019.
- Улли Соммер. Программирование микроконтроллерных плат Arduino/Freeduino. БХВ-Петербург, 2016.
- Мобильные роботы на базе Arduino. Момот М.В. БХВ-Петербург, 2017.
- Москвичев А. А., Кварталов А. Р. Захватные устройства промышленных роботов и манипуляторов. Форум, Инфра-М, 2015.

Для обучающихся и родителей:

Джереми Блум. Изучаем Arduino- инструменты и методы технического волшебства. М., 2015.